©IUCN/SCC Otter Specialist Group
Volume 41 Issue 4 (November 2024)
Preliminary Characterization of Volatile Organic Compounds in African Clawless Otter Aonyx capensis Spraint.
Stephanie G. Nicolaides1*, Almuth Hammerbacher2, and Trevor Mcintyre1
1Department of Life and Consumer Sciences, University of South Africa, Roodepoort 1710, South Africa
2Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
*Corresponding Author Email: sgnicolaides22@gmail.com
INTRODUCTION
Coding of information in animal chemical communication is believed to occur through a combination of behavioural and chemical means (Sun and Müller-Schwarze, 1998). Olfactory signals persist in the environment for prolonged periods of time (compared to visual and auditory signals) such that communication can occur over longer time frames where senders and receivers of signals do not necessarily need to be in close proximity (Vitale et al., 2020). The use of olfactory communication through scent marking is a common feature in mammals (Bradbury and Vehrencamp, 1998) and is employed for a variety of reasons including individual recognition (Brennan and Kendrick, 2006; Kulahci et al., 2014), group identity (Vaglio et al., 2016), territorial marking (Black-Decima and Santana, 2011; Marneweck 2013), and reproduction (Scordato and Drea, 2007; Melo and González-Mariscal, 2010). Mammals produce complex chemical signals with multiple intricate components. Consequently, the desirable initial method in deciphering these signals is to begin with a chemical analysis approach (Sun and Müller-Schwarze, 1998).
Otters belong to the family Mustelidae and all species in this family have well developed anal scent glands (Hutchings and White, 2000). Scent marking and the malodorous nature of secretions is an integral part of intraspecific communication in mustelids and as such they have been the focus of chemical and olfactory research (Burger, 2005). The anal gland volatiles of the following Mustelid species have been chemically analysed: the American mink, Mustela vison (Brinck et al., 1978); the stoat (Mustela erminea); the ferret, Mustela putorius furo (Crump and Moors, 1985); the European polecat, Mustela putorius (Brinck et al., 1983); the steppe polecat, Mustela eversmanni (Zhang et al., 2002a); the Siberian weasel, Mustela sibirica (Zhang et al., 2002b); European badgers, Meles meles (Noonan et al., 2019); and the Eurasian otter, Lutra lutra (Kean et al., 2011). The chemical information of these species has made them valuable model systems in the broad category of mammal chemical communication research (Zhang et al., 2002a). Otters represent 13 of the 58 extant species in the family Mustelidae, yet to date there has been little research to ascertain the composition of scent marking and olfactory communication (Kean et al., 2011).
African clawless otters (Aonyx capensis) are elusive, secretive and nocturnal, and are therefore challenging to study. The behaviour of African clawless otters at latrine sites have been previously described (Jordaan et al., 2017) and, more recently also the characteristics of latrine locations and associated otter behaviours (Nicolaides et al., 2024). These results suggest that otters may select latrine site locations to maximize their conspicuousness to conspecifics and that scent marking at these latrine sites likely play an important role in intra-specific communication. Despite these investigations, the role of scent marking in terms of olfactory communication and its role in the social behaviours of African clawless otters remain poorly understood. This study investigated the composition of odour profiles of African clawless otter anal gland secretions. By comparing the composition of odour profiles with published accounts for other species we further aimed to make inferences on the types of information conveyed through African otter anal gland secretions.
MATERIALS AND METHODS
Sample Collection
Otter faecal and anal gland secretions were identified based on their shape, size and characteristic odour (Stuart and Stuart, 2019). African clawless otter faeces are typically sausage shaped (one end pointed) and anal gland secretions typically accompany faeces as dark jelly like deposits (Stuart and Stuart, 2019). The faeces typically range from 25 to 35 mm and are full of fish scales, fish bones and shell fragments. African clawless otters have a characteristic odour that is described as being very musky and fishy, combined with a sweet taint (Estes, 1991; Stuart and Stuart, 2019). Upon discovery of otter spraint, coordinates were recorded using a hand-held GPS device. Individual fresh and unbroken spraint samples were collected, placed into individually labelled, sterile plastic sealable vials, and stored at -20 °C.
Chemical Analysis
Volatile organic compounds (VOCs) emitted by the faecal and anal gland secretion samples were sampled and analysed using solid-phase microextraction (SPME) and gas chromatography mass coupled to spectrometry (GC-MS). Approximately 0.2 g of frozen samples were transferred to 1.5 ml analytical glass vials (Machery Nagel, Separations, South Africa). Sample vials were then placed in a heating block at 40 °C to ensure a consistent temperature during sampling. A 65µm polydimethylsiloxane/divinylbenzene SPME fibre (Supelco, Merck South Africa) was exposed to the headspace above each sample for 15 min. Preliminary testing of exposure times of up to 30 min indicated that 15 min was sufficient to reach equilibrium. Fibres were conditioned according to manufacturer’s recommendations and reconditioned for 6 min in the GC injection port at 300 °C if the fibre had not been used for several hours. An analysis of the fibre not exposed to a sample was conducted to detect non-sample compounds and any contamination or deterioration of the fibre.
Following exposure to headspace volatiles, the fibre was immediately manually injected into the GC-MS (Agilent 7890B gas chromatograph coupled to a 7977MSD quadrupole mass spectrometer). Samples were analysed on a 30 m, 0.25 mm inner diameter, 0.25μm film thickness, HP5 column (J&W, Agilent, South Africa), with helium as the carrier gas at constant flow rate of 1.2 L/min. Separation was achieved with a 2-min hold at 50 °C, followed by a linear temperature increase of 10°C/min to 300 °C and held at 300 °C for 2 min, resulting in a total programme time of 29 min. An external alkane hydrocarbon standard (1 μl) was injected using an automatic liquid injector for calculation of retention indices, in turn allowing for the calculation and standardisation of retention times.
The mass spectrometer (MS) operated in electron impact ionization EI+ mode, scanning from ion mass fragments 50 to 300 m/z. The mass spectra were deconvoluted using MassHunter 1.2 (Agilent) in conjunction with the NIST mass spectral library and the R-based statistics suite, Metababoanalyst. Data analysis and peak integration were performed using the program MassHunter. Compounds were identified based on comparison of mass spectra and retention times to the National Institute of Standards mass spectral library (NIST, 2017) and by calculating their retention indices. Peaks with a short retention time below 4 min were not included in the analysis because signals with retention times were not measurable with sufficient accuracy. The faecal matter samples from which the volatiles were extracted were air-dried to determine their dry weight.
The retention time, Kovat’s retention index (KI), mean relative abundance, standard deviations, match factor to compounds in the NIST library and occurrence of each sample were determined. The retention index of each peak on the GC chromatogram was compared to experimentally determined KIs in the NIST library (Zang et al., 2021) (see Table 1). Peak areas were normalized by sample dry weight to obtain relative quantities of volatiles.
RESULTS
The VOCs of 14 anal gland secretion and faecal samples of African clawless otters were identified. The number of compounds per sample ranged between 24 and 51 (mean 32 ± 7.83). Across all samples a total of 73 compounds were recorded, of which 34 were provisionally identified using the NIST library and KI values (Table 1). The compounds identified comprised of a complex mixture of alcohols (40.54%), esters (10.81%), ketones (5.41%), benzenes (5.41%), phenols (5.41%), aldehyde (5.41%), aromatics (5.41%), alkanes (5.41%), diterpene (5.41%), monoterpenoids (2.7%) organic disulfide (2.7%), alkenes (2.7%) and long-chain fatty acid (2.7%) (Table 1). One compound provisionally identified as an amide was common across all 14 samples.
DISCUSSION
Olfactory communication plays an important role in the ecology of otters and their socio-spatial organisation (Johnson et al., 2000; Berzins and Helder, 2008; Kean et al., 2015; Mumm and Knörnschild, 2018). The precise mechanistic knowledge of how scent communication at latrine sites is conveyed between individuals remains an under-investigated topic. Many carnivores advertise their territory and resource ownership as a pre-emptive measure to avoid conflict and potentially costly agonistic encounters with conspecifics (Buesching and Stankowich, 2017). This is effectively achieved with low-maintenance long term signals that do not require the continued physical presence of the owner, but that can be matched to the individual who marked the site through individually identifiable scent. Given that a scent remains in the environment for some time it allows for the owner of the scent to be identified by rivals, even in the owner’s absence, reducing the costs of physical conflicts (Gosling, 1982; Leuchtenberger, 2018).
Of the thirty-four compounds provisionally identified in African clawless otters, eleven were identified in the literature as having been documented to play a role in the behaviour of several animal species (Table 2). The only other otter species where faecal VOC analyses were conducted to date is the Eurasian otter (Kean et al., 2015). Two compounds identified in African clawless otters here have also been identified in the Eurasian otter, namely Phenol and 1-Tridecanol.
Table 2 : Eleven of the thirty-four volatile organic compounds identified in African clawless otter’s spraint and the published report of their biological role in other animals. | ||||
No | Compound Name | Cited Relevance to Behaviour | ||
Behaviour | Species | |||
1 | Phenol | Oestrus, sexuality, differentiating female reproductive states, age differentiation | Idea leuconoe (Nishida et al. 1996); Bos Taurus (Sankar et al. 2007); Mamestra brassicae (Jacquin et al. 1991); Bubalus bubalis (Brahmachary and Poddar-Sarkar 2015); Meles meles (Noonan et al. 2019); Lutra lutra (Kean et al. 2015); Panthera leo (Soso and Koziel 2017); Canis lupus signatus (Martín et al. 2010) | |
2 | 1-Nonanol | Sex pheromone | Achroia innotata (Francke and Schulz 1999); Raphicerus campestris (Burger et al. 1999) | |
3 | Dodecanal | Sexual attraction | Lemur catta (Shirasu et al. 2020) Tachyglossus aculeatus setosus (Harris et al. 2012) | |
4 | 1-Tridecanol | Sex pheromone | Junco hyemalis (Whittaker et al. 2013); Lutra lutra (Kean et al. 2015) | |
5 | Zingiberenol | Sex pheromone | Tibraca limbativentris (Blassioli-Moraes et al. 2020) | |
6 | 7-Methylheptadecane | Sex pheromone | Lambdina athasaria (Duff et al. 2001); Lambdina pellucidaria (Duff et al. 2001) | |
7 | Tetradecanoic acid | Possible sex differentiation | Caracal caracal (Goitom 2017); Suricata suricatta (Leclaire et al. 2017) | |
8 | (Z)-9-Tetradecenyl acetate | Sex pheromone | Lepidoptera (Byers 2005); Ostrinia zealis (Huang et al. 1998); Ostrinia zaguliaevi (Ishikawa et al. 1999); Agrotis segetum (Löfstedt et al. 2014); Spodoptera frugiperda (Malo et al. 2015) | |
9 | Phytane | Reproduction | Vipera ammodytes (Shafi et al. 2021) | |
10 | 9-Heptadecanone | Trail following behavior | Pachycondyla tarsata (Janssen et al. 1999) | |
11 | 1-Hexadecanol | Sex pheromone, oestrus, kin recognition, stimulating parental care | Caracal caracal (Goitom et al. 2017); Bovidae (Shafi et al. 2021); Junco hyemalis carolinensis (Whittaker et al. 2016; Mas and Kolliker 2008), Raphicerus campestris (Burger et al. 1999), Suricata suricatta (Leclaire et al. 2017), Mungos mungo (Jordan et al. 2010) | |
Nine of the compounds identified in the African clawless otter spraint are associated with reproduction and/or as sex pheromones in other animals (Table 2). This suggests that latrines may be primarily used for individual-level sexual communication in African clawless otters, and not, as previously speculated (Jordaan et al., 2017) for maintaining territories and to facilitate inter-clan communication. Of course, such functions are not necessarily exclusive to one another, and we cannot exclude at this stage the possibility that latrines are important for both inter-individual, as well as inter-clan communication. The functions of specific VOCs may furthermore differ between different species. For example, 1-hexadecanol is a common compound in the excrement of several mammals. In the steenbok (Raphicerus campestris) (Burger et al., 1999) and meerkat (Suricata suricatta) (Leclaire et al., 2017) it functions as a sex pheromone, and in the caracal (Caracal caracal) (Goitom et al., 2009) and Bovidae (Shafi et al., 2021) it plays a role in oestrus signalling. The compound 1-hexadecanol has also been identified in an avian species, the dark-eyed Junco (Junco hyemalis carolinensis), where it functions in kin recognition (Célérier et al., 2011) and in stimulating parental care (Mas and Kolliker, 2008). Phenol has also been identified to play different functions across different species. In water buffalo (Bubalus bubalis) (Brahmachary and Poddar-Sarkar, 2015) phenol plays a role in signalling sexuality. Phenol plays different roles in other species too. For example, in cattle (Bos taurus) (Sankar et al., 2007) it indicates oestrus, in the European badger (Noonan et al., 2019) it differentiates female reproductive state and in the African lion (Panthera leo) (Soso and Koziel, 2017) and Iberian Wolf (Canis lupus signatus) (Martín et al., 2010) it communicates age differentiation. Phenol has also been identified as an insect pheromone in the large tree nymph butterfly (Idea leuconoe) (Nishida et al., 1996) and cabbage moth (Mamestra brassicae) (Jacquin et al., 1991).
In addition to suggesting a likely role in reproductive communication, our results illustrate that African clawless otter scent profiles are complex and diverse, with substantial variation in profiles between samples analysed both in terms of the number of VOCs present, as well as their composition. The variation across the 14 scent profiles may be associated with variables like sex, age, reproductive status, dominance and health (Kean et al., 2015; Leclaire et al., 2017; Noonan et al., 2019). Unfortunately, these variables are unknown for the samples in our study though and we can only speculate at this stage on their potential roles in explaining the reported variability. Moreover, the substrate type, time difference between deposition and collection and between the scats collection and analysis are all factors that contribute to the differences between the samples (Kean et al., 2015).
Studies assessing odour and olfaction are often able to equate certain behaviours with scent (Soso and Koziel, 2017), such that the role of individual compounds can be identified and linked to specific behaviour. For example, the ability of elephants to detect the compound cyclohexanone has led researchers to suspect that some must signals may be single compounds (Rasmussen et al., 1996). Further research on individual chemical compounds and their role in scent-marking and olfactory communication are required to gain an understanding of the influence of particular VOCs on elucidating the behaviour of African clawless otters (Soso and Koziel, 2017).
Conflict of Interest: The authors declare that they have no conflicts of interest
Author Contributions: SGN contributed to design of the study, reviewed literature, collected and analyzed the data, applied statistical analyses and wrote the manuscript; AH contributed to the design and development of the study, secured funding for the research and reviewed and edited the manuscript; TM contributed to the design and development of the study, secured funding for the research, and reviewed and edited the manuscript.
Funding: This study received financial assistance from the South African Department of Science and Innovation through the National Research Foundation (Grant number 137971).
Data Availability: Data is available upon reasonable request to the corresponding author.
REFERENCES
Berzins, R., Helder, R. (2008). Olfactory communication and the importance of different odour sources in the ferret (Mustela putorius f. furo). Mamm. Bio. 73(5): 379–387. http://dx.doi.org/10.1016/j.mambio.2007.12.002
Black-Decima, P., Santana, M. (2011). Olfactory communication and counter-marking in brown brocket deer Mazama gouazoubira. Acta. Theriol. 56(2): 179–187. http://dx.doi.org/10.1007/s13364-010-0017-6
Blassioli-Moraes, M.C., Khrimian, A., Michereff, M.F.F., Magalhães, D.M., Hickel, E., de Freitas, T.F.S., Barrigossi, J.A.F., Laumann, A., Silv, A.T., Guggilapu, S.D., Silva, C.C., Sant’Ana, J., Borges, M. (2020). Male-produced sex pheromone of Tibraca limbativentris revisited: absolute configurations of zingiberenol stereoisomers and their influence on chemotaxis behavior of conspecific females. J. Chem. Ecol. 46(1): 1–9. https://doi.org/10.1007/s10886-019-01125-w
Bradbury, J.W., Vehrencamp, S.L. (1998). Principles of Animal Communication. 2nd edn. Sinauer Associates, Sunderland, Massachusetts, USA. ISBN: 9780878930456.
Brahmachary, R., Poddar-Sarkar, M. (2015). Fifty years of tiger pheromone research. Curr. Sci. 108(12): 2178–2185. https://www.jstor.org/stable/24905653
Brennan, P.A., Kendrick, K.M. (2006). Mammalian social odours: attraction and individual recognition. Philos Trans R Soc Lond B Biol Sci 361(1476): 2061–2078. http://dx.doi.org/10.1098/rstb.2006.1931
Brinck C., Erlinge S., Sandell M. (1983). Anal sac secretion in mustelids: a comparison. J. Chem. Ecol. 9: 727–745. https://doi.org/10.1007/BF00988779
Brinck, C., Gerell, R., Odham, G. (1978). Anal pouch secretion in mink, Mustela vison. Oikos. 30(1):68–75. https://doi.org/10.2307/3543523
Buesching, C., Stankowich, T. (2017). Biology and conservation of the musteloids (badgers, otters, skunks, raccoons and their kin). Chapter 5 in Macdonald, D.W., Newman, C,, and Harrington, L.A. (Eds) Communication amongst the musteloids: signs, signals, and cues. Oxford University Press. pp 149–166. https://doi.org/10.1093/oso/9780198759805.003.0005
Burger B.V. (2005). Mammalian semiochemicals. Top. Curr. Chem. 240: 231–278. http://dx.doi.org/10.1007/b98318
Burger, B.V., Greyling, J., Spies, H.S.C. (1999). Mammalian exocrine secretions. XIV: Constituents of preorbital secretion of steenbok, Raphicerus campestris. J. Chem. Ecol. 25(9): 2099–2108. https://doi:10.1023/A:1021040923988
Byers, J.A. (2005). Chemical constraints on the evolution of olfactory communication channels of moths. J. Theor. Bio. 235(2) : 199–206. http://dx.doi.org/10.1016/j.jtbi.2005.01.003
Célérier, A., Bon, C., Malapert, A., Palmas, P., Bonadonna, F. (2011). Chemical kin label in seabirds. Biol. Lett. 7(6) : 807–810. http://dx.doi.org/10.1098/rsbl.2011.0340
Crump, D.R., Moors, P.J. (1985). Anal gland secretions of the stoat (Mustela erminea) and the ferret (Mustela putorius furo): some additional thietane components. J. Chem. Ecol. 11(8): 1037–1043. https://doi.org/10.1007/bf01020673
Duff, C.M., Gries, G., Mori, K., Shirai, Y., Seki, M., Takikawa, H., Sheng, T., Slessor, K.N., Gries, R., Maier, C.T., Ferguson, D.C. (2001). Does pheromone biology of Lambdina athasaria and L. pellucidaria contribute to their reproductive isolation? J. Chem. Ecol. 27(3): 431–442. https://doi.org/10.1023/a:1010324519127
Estes. R.D. (1991). The behavior guide to African mammals. University of California Press, California, USA. pp. 441–445. ISBN: 9780520272972
Francke, W., Schulz, S. (1999). Pheromones. Pp.197–261 in Barton, D., Nakanishi, K., Meth-Cohn, O., Kool, E.T. (Eds) Comprehensive Natural Products Chemistry. Pergamon. ISBN: 978-0080431598
Goitom, A.H. (2017). Identification of the putative urinary intraspecific recognition pheromone of the caracal Caracal caracal. Dissertation, University of Stellenbosch, South Africa. http://hdl.handle.net/10019.1/101159
Gosling, L.M. (1982). A reassessment of the function of scent marking in territories. Z. Tierpsychol. 60(2): 89–118. https://doi.org/10.1111/j.1439-0310.1982.tb00492.x
Harris, R.L., Davies, N.W., Nicol, S.C. (2012). Chemical composition of odorous secretions in the Tasmanian short-beaked echidna (Tachyglossus aculeatus setosus). Chem. Senses. 37(9): 819–836. https://doi.org/10.1093/chemse/bjs066
Huang, Y., Honda, H., Yoshiyasu, Y., Hoshizaki, S., Tatsuki, S., Ishikawa, Y. (1998). Sex pheromone of the butterbur borer, Ostrinia zaguliaevi. Entomol. Exp. Appl. 89(3): 281–287. http://dx.doi.org/10.1023/A:1003577714551
Hutchings, M.R., White, P.C.L. (2000). Mustelid scent-marking in managed ecosystems: implications for population management. Mammal. Rev. 30(3-4): 157–169. http://dx.doi.org/10.1046/j.1365-2907.2000.00065.x
Ishikawa, Y., Takanashi, T., Huang, Y. (1999). Comparative studies on the sex pheromones of Ostrinia spp. in Japan: The burdock borer, Ostrinia zealis. Chemoecology. 9(1): 25–32. http://dx.doi.org/10.1007/s000490050030
Jacquin, E., Nagnan, P., Frerot, B. (1991). Identification of hairpencil secretion from male Mamestra brassicae (L) (Lepidoptera: Noctuidae) and electroantennogram studies. J. Chem. Ecol. 17: 239–246. https://dx.doi.org/10.1007/BF00994436
Janssen, E., Hölldobler, B., Bestmann, H.J. (1999). A trail pheromone component of the African stink ant, Pachycondyla (Paltothyreus) tarsata Fabricius (Hymenoptera: Formicidae: Ponerinae). Chemoecology 9(1): 9–11. https://doi.org/10.1007/s000490050028
Johnson, D., Macdonald, D., Dickman, A. (2000). An analysis and review of models of the sociobiology of the Mustelidae. Mammal. Rev. 30(4): 171–196. http://dx.doi.org/10.1046/j.1365-2907.2000.00066.x
Jordaan, R.K., Somers, M.J., McIntyre, T. (2017). Dancing to the message: African clawless otter scent marking behaviour. Hystrix. 28(2): 277–279. https://doi.org/10.4404/hystrix-28.2-12264
Jordan, N.R., Mwanguhya, F., Kyabulima, S., Rüedi P., Cant M.A. (2010). Scent marking within and between groups of wild banded mongooses. J. Zool. 280(1): 72–83. http://dx.doi.org/10.1111/j.1469-7998.2009.00646.x
Kean, E.F., Chadwick, E.A., Müller, C.A. (2015). Scent signals individual identity and country of origin in otters. Mamm Biol 80(2): 99–105. http://dx.doi.org/10.1016/j.mambio.2014.12.004
Kean, E.F., Müller, C.T., Chadwick, E.A. (2011). Otter scent signals age, sex, and reproductive status. Chem. Senses. 35(6): 555–564. https://doi.org/10.1093/chemse/bjr025
Kulahci, I.G., Drea, C.M., Rubenstein, D.I., Ghazanfar, A.A. (2014). Individual recognition through olfactory–auditory matching in lemurs. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 12: 20140071. https://doi.org/10.1098/rspb.2014.0071
Leclaire, S., Jacob, S., Greene, L.K., Dubay, G.R., Drea, C.M. (2017). Social odours covary with bacterial community in the anal secretions of wild meerkats. Sci Rep 7(1): 1–13. http://dx.doi.org/10.1038/s41598-017-03356-x
Leuchtenberger, C. (2018). Scent-Marking. In Vonk, J., Shackelford, T. (Eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. ISBN: 978-3-319-55064-0 https://doi.org/10.1007/978-3-319-55065-7_685
Löfstedt, C., Van Der Pers, J.N.C., Lofqvist, J., Lanne, B.S., Appelgren, M., Bergström, G., Thelin, B. (1982). Sex pheromone components of the turnip moth, Agrotis segetum. J. Chem. Ecol. 8: 1305–1321. https://doi.org/10.1007/bf00987764
Malo, E.A., Castrejón-Gómez, V.R., Cruz-López, L., Rojas, J.C. (2004). Antennal sensilla and electrophysiological response of male and female Spodoptera frugiperda (Lepidoptera: Noctuidae) to conspecific sex pheromone and plant odors. Ann. Entomol. Soc. Am. 97(6): 1273–1284. http://dx.doi.org/10.1603/0013-8746(2004)097[1273:ASAERO]2.0.CO;2
Marneweck, C. (2013). Silent signals: identifying dung odour profiles that indicate age, sex and status in white rhino olfactory communication. Dissertation, University of KwaZulu-Natal.
Martín, J., Barja, I., López, P. (2010). Chemical scent constituents in feces of wild Iberian wolves (Canis lupus signatus). Biochem. Syst. Ecol. 38(6): 1096–1102. http://dx.doi.org/10.1016/j.bse.2010.10.014
Mas, F., Kolliker, M. (2008). Maternal care and offspring begging in social insects: chemical signalling, hormonal regulation and evolution. Anim. Behav. 76: 1121–1131. http://dx.doi.org/10.1016/j.anbehav.2008.06.011
Melo A.I., González-Mariscal G., 2010. Communication by olfactory signals in rabbits: its role in reproduction. Vitam Horm 83: 351–371. http://dx.doi.org/10.1016/S0083-6729(10)83015-8
Mumm, C.A.S. Knörnschild, M. (2018). Mustelid communication. In Vonk, J., Shackelford, T. (Eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. ISBN: 978-3-319-55064-0 https://doi.org/10.1007/978-3-319-55065-7_1191
Nicolaides, S.G., Mostert, T.H.C., McIntyre, T. (2024). Latrine site selection by African clawless otters, Aonyx capensis, and their behavior during latrine visitations. J Mamm. 2024: 1–15. https://doi.org/10.1093/jmammal/gyad118
Nishida, R., Schulz, S., Kim, C.S., Fukami, H., Kuwahara, Y., Honda, K., Hayashi, N. (1996). Male sex pheromone of a giant danaine butterfly, Idea leuconoe. J. Chem. Ecol. 22: 949–972. https://doi.org/10.1007/BF02029947
Noonan, M.J., Tinnesand, H.V., Müller, C.T., Rosell, F., Macdonald, D.W., Buesching, C.D. (2019). Knowing me, knowing you: anal gland secretion of European badgers (Meles meles) codes for individuality, sex and social group membership. J. Chem. Ecol. 45(10): 823–837. https://doi.org/10.1007/s10886-019-01113-0
Qu, C., Schneider, B.I., Kearsley, A.J., Keyrouz, W., Allison, T.C. (2021). Predicting kovats retention indices using graph neural networks. J. Chromatogr. A. 1646(7): 462100. http://dx.doi.org/10.1016/j.chroma.2021.462100
Rasmussen, L.E.L., Lee, T.D., Roelofs, W.L., Zhang, A., Daves, G.D. (1996). Insect pheromone in elephants. Nature. 379(6567): 684. https://doi.org/10.1038/379684a0
Sankar, R., Archunan, G., Habara, Y. (2007). Detection of oestrous-related odour in bovine (Bos taurus) saliva: bioassay of identified compounds. Animals. 1(9): 1321–1327. https://doi.org/10.1017/S1751731107000614
Scordato, E.S., Drea, C.M. (2007). Scents and sensibility: information content of olfactory signals in the ringtailed lemur, Lemur catta. Anim. Behav. 73(2): 301–314. https://psycnet.apa.org/doi/10.1016/j.anbehav.2006.08.006
Shafi, T.A., Siddiqui, M.F., Wani, A.A. (2021). Chemical signaling in bovines: understanding the behavior and way of communication. In Abubakar, M. (Ed) Bovine Science - Challenges and Advances. IntechOpen. http://dx.doi.org/10.5772/intechopen.99834
Shirasu, M., Ito, S., Itoigawa, A., Hayakawa, T., Kinoshita, K., Munechika, I., Imai, H., Touhara, K. (2020). Key male glandular odorants attracting female ring-tailed lemurs. Curr. Biol. 30(11): 2131–2138. http://dx.doi.org/10.1016/j.cub.2020.03.037
Soso, S.B., Koziel, J.A. (2017). Characterizing the scent and chemical composition of Panthera leo marking fluid using solid-phase microextraction and multidimensional gas chromatography–mass spectrometry-olfactometry. Sci. Rep. 7(1): 1-15. https://doi.org/10.1038/s41598-017-04973-2
Stuart, C., Stuart, T. (2019). A field guide to the tracks and signs of southern, Central and East African wildlife. Cape Town: Struik Nature. ISBN: 978-1775846925
Sun, L., Müller-Schwarze, D. (1998). Anal gland secretion codes for relatedness in the beaver, Castor canadensis. Ethology. 104(11):917–927. http://dx.doi.org/10.1111/j.1439-0310.1998.tb00041.x
Vaglio, S., Minicozzi, P., Romoli, R., Boscaro, F., Pieraccini, G., Moneti, G., Moggi-Cecchi, J. (2016). Sternal gland scent-marking signals sex, age, rank, and group identity in captive mandrills. Chem. Senses. 41(2):177–186. http://dx.doi.org/10.1093/chemse/bjv077
Vitale, J.D., Jordan, N.R., Gilfillan, G.D., McNutt, J.W., Reader, T. (2020). Spatial and seasonal patterns of communal latrine use by spotted hyenas (Crocuta crocuta) reflect a seasonal resource defense strategy. Behav. Ecol. Sociobiol. 74(10): 1–14. https://link.springer.com/article/10.1007/s00265-020-02895-0
Whittaker, D.J., Gerlach, N.M., Slowinski, S.P., Corcoran, K.P., Winters, A.D., Soini, H.A., Novotny, M.V., Ketterson, E.D., Theis, K.R. (2016). Social Environment Has a Primary Influence on the Microbial and Odor Profiles of a Chemically Signaling Songbird. Front. Ecol. Evol. 4. https://doi.org/10.3389/fevo.2016.00090
Whittaker, D.J., Gerlach, N.M., Soini, H.A., Novotny, M.V., Ketterson, E.D. (2013). Bird odour predicts reproductive success. Anim. Behav. 86(4): 697-703. http://dx.doi.org/10.1016/j.anbehav.2013.12.003
Zang, W., Sharma, R., Li, M.W.H., Fan, X. (2021). Retention time trajectory matching for target compound peak identification in chromatographic analysis. arXiv:2107.07658. https://doi.org/10.48550/arXiv.2107.07658
Zhang, J., Sun, L., Zhang, Z., Wang, Z., Chen, Y., Wang, R. (2002b). Volatile compounds in the anal gland of Siberian weasels (Mustela sibirica) and steppe polecats (M. eversmanni). J. Chem. Ecol. 28: 1287–1297. https://doi.org/10.1023/A:1016246120479
Zhang, J., Zhang, Z., Wang, R., Chen, Y., Wang, Z. (2002a). A headspace sampling method and its application in analysis of volatiles of anal glands of the American mink (Mustela vison). Acta. Zool. Sin. 48(3): 137–141. https://caod.oriprobe.com//articles/4721179/A_HEADSPACE_SAMPLING_METHOD_AND_ITS_APPLICATION_IN_ANALYSIS_OF_VOLATIL.htm
Résumé:Caractérisation Préliminaire des Composés Organiques Volatils dans l’Épreinte de Loutre à Joues Blanches, Aonyx capensis
La communication chimique joue un rôle important dans la sélection du partenaire, la territorialité, la protection des ressources, les soins parentaux et la transmission des maladies chez de nombreux taxons. Les études examinant la communication olfactive et la communication fécale dans les populations d'animaux sauvages sont rares. À ce jour, aucune analyse des odeurs codées dans les sécrétions des glandes anales de la loutre à joues blanches n'a été réalisée. Les profils des composés organiques volatils de 14 échantillons de sécrétions des glandes anales et de matières fécales de loutres à joues blanches sauvages ont été étudiés pour déterminer la composition des profils olfactifs et en déduire le rôle potentiel des composés spécifiques. Les sécrétions des glandes anales et fécales ont été analysées par chromatographie en phase gazeuse et spectrométrie de masse. Sur l’ensemble des échantillons analysés, 73 composés ont été trouvés dont 34 provisoirement identifiés. Neuf des composés identifiés fonctionnent comme des phéromones sexuelles et/ou des signaux d'état de reproduction chez d'autres vertébrés, ce qui suggère que les latrines de la loutre à joues blanches jouent probablement aussi un rôle important dans la communication de reproduction entre les individus de l'espèce. Des études complémentaires, permettant de corréler les identités des loutres à joues blanches connues et leur période de reproduction avec les caractéristiques olfactives de leur épreinte, sont nécessaires afin de mieux valider les interprétations.
Revenez au dessus
Resumen: Caracterización Preliminar de los Compuestos Orgánicos Volátiles en Fecas de la Nutria sin Uñas Africana, Aonyx capensis
La comunicación química juega un rol importante en la selección de pareja, la territorialidad, la guarda de los recursos, el cuidado parental y la transmisión de enfermedades en muchos taxones. Los estudios que investigan la comunicación olfativa y la comunicación por marcas olorosas en poblaciones de animales silvestres, son raros. Hasta la fecha, no ha habido análisis de los olores codificados en las secreciones anales de la nutria sin uñas Africana. Investigamos los perfiles de compuestos orgánicos volátiles de 14 muestras de secreciones de glándulas anales y de fecas de nutria sin uñas Africana, para determinar la composición de los perfiles de olores e inferir el rol potencial de los compuestos particulares. Las secreciones fecales y de glándulas anales fueron analizadas por medio de cromatografía de gases acoplada a espectrometría de masas. En el conjunto de muestras, encontramos un total de 73 compuestos, de los cuales 34 fueron identificados provisoriamente. Nueve de los compuestos identificados funcionan como feromonas sexuales y/o señales de status reproductivo en otros vertebrados, sugiriendo que las letrinas de la nutria sin uñas Africana también juegan un rol importante en la comunicación reproductiva entre individuos de la especie. Para validar las interpretaciones aquí informadas, se requieren más estudios que asocien las identidades de individuos conocidos de nutria sin uñas Africana y sus status reproductivo, con las características olfatorias de sus fecas.
Vuelva a la tapa